

RP-003-001515

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

February - 2019

BSMT-503-(A) (Theory): Mathematics

[Discrete Mathematics & Complex Analysis - 1]
(Old Course)

Faculty Code: 003

Subject Code: 001515

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (i) All the questions are compulsory.

- (ii) Numbers written to the right indicate full marks of the question.
- 1 Answer all the following 20 short answer questions: 20
 - (1) Define: Partial order relation.
 - (2) Totally ordered set.
 - (3) For the Lattice (L, \leq) and $a, b \in L$ $a \vee (a \wedge b) =$ _____.
 - (4) Define: Inverse relation.
 - (5) Define: Irreflexive relation.
 - (6) Define: Atom in Boolean Algebra.
 - (7) Define: Minterm.
 - (8) Define: Boolean function.
 - (9) Find the atoms of Boolean Algebra $(S_{30}, *, \oplus, ', 0, 1)$.
 - (10) If $(L, *, \oplus, 0, 1)$ is a bounded lattice then $a * 0 = \underline{\hspace{1cm}}$.

- (11) Define: Analytic function.
- (12) State C-R conditions in Cartesian form.
- (13) The real part of $f(z) = e^z$ is _____.
- (14) If $x + iy = \sqrt{2} + 3i$ then $x^2 + y = \underline{\hspace{1cm}}$.
- (15) The real part of $\frac{2+3i}{3-4i} = \underline{\hspace{1cm}}$
- (16) Define: Closed curve.
- (17) If $c: z z_0 = r_0 = r_0 e^{i\theta}$ then $\int_c \frac{dz}{z z_0} =$ _____.
- (18) If C:|z|=1 then $\int_{c} \frac{dz}{z-2} =$ ____.
- (19) Define: Contour.
- (20) Define: Jordan Arc.
- 2 (a) Attempt any three:
 - (1) Draw Hasse Diagram of (S_{12}, D) where $S_{12} = \{1, 2, 3, 4, 6, 12\}.$
 - (2) Explain why $(S = \{2,3\}, D)$ is not a Lattice.
 - (3) For a Lattice (L, \leq) and $a \in L$ show that $a \vee a = a$ and $a \wedge a = a$.
 - (4) $\forall a, b \in B$ where B is a Boolean Algebra then show that $a*(a'\oplus b) = a*b$.
 - (5) State unique representation theorem for Boolean Algebra.
 - (6) Prove for Boolean expression $(x_1 * x_2 * x_3) \oplus (x_1 * x_2 !* x_3) = x_1 * x_3.$

6

(b) Attempt any three:

- (1) State and prove modular inequality.
- (2) Let (L, \leq) be a lattice then show that $a \wedge b = a \wedge c$ and $a \vee b = a \vee c \Rightarrow b = c$.
- (3) Find the cube array presentation of f(x, y, z) = xy + xz'.
- (4) Prove that sum of all minterms of n variables is 1.
- (5) Show that 0 and 1 are unique complements of each other.
- (6) Find the minimal sum of product of the following expression.

$$a(x, y, z) = xyz + xyz' + x'yz' + x'y'z$$

(c) Attempt any two:

10

- (1) State and prove Stone's theorem of Boolean Algebra.
- (2) Prove that every non-zero element of a finite Boolean Algebra can be expressed uniquely as the sum of atoms of Boolean Algebra.
- (3) In usual notations prove that :

$$A(x_1 * x_2) = A(x_1) \cap A(x_2)$$

 $A(x_1 \oplus x_2) = A(x_1) \cup A(x_2)$

- (4) Prove that every bounded chain is a distributive Lattice.
- (5) Prove that direct product of a Lattice is also a Lattice.
- 3 (a) Attempt any three:

6

- (1) Show that $f(z) = \overline{z}$ is not analytic.
- (2) Prove : $f(z) = \frac{1}{z}$ is analytic.
- (3) Find: $\lim_{z \to \infty} \frac{2z-3}{z-2i}$.

(4) Find
$$\int_{c}^{\infty} \frac{z^2}{z-1} dz$$
 where $C:|z|=1$.

- (5) State Liouville's theorem.
- (6) If C:|z|=1 find $\int_{c}^{z} \frac{z}{2z-1} dz$.
- (b) Attempt any three:
 - (1) Prove : $u = r^2 \sin 2\theta$ is a harmonic function.
 - (2) Find an analytic function f(z) such that $\operatorname{Re}(f'(z)) = 3x^2 4y 3y^2$ and f(i+1) = 0.
 - (3) In usual notations prove that : $\nabla^2 = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$.
 - (4) Evaluate : $\int_{C} \frac{z^2 + 3}{z^2(z 4)} dz$ where C: |z| = 1.
 - (5) Evaluate: $\int_{C} \frac{\cosh z}{z^3} dz \text{ where } C: |z| = 1.$
 - (6) Evaluate: $\int_{C} \frac{e^{2z}}{(z-1)^4} dz \text{ where } C: |z| = 3.$
- (c) Attempt any two:
 - (1) Obtain Laplace's equation in Polar Form.
 - (2) State and prove Cauchy inequality.
 - (3) State and prove Cauchy integral formula.
 - (4) In usual notations prove that : $\left| \int_{c} f(z) dz \right| \le ML$.
 - (5) Find an analytic function f(z) = u + iv such that u v = x + y.

10

9